Lecture 10. Linear Second-Order Equations
with Constant Coefficients Part 1

Linear Second-Order Equations with Constant Coefficients
Let's discuss how to solve the homogeneous second-order linear differential equation
ay" +by +cy=0 (1)
with constant coefficients a, b, and c.
Consider a function of the form y = e€"*. Observe that
y = (™) =re', and y" = (e™)" = rie™.

This suggest that we can try to find 7 such that when we substitute y, ¢’ and y” into Eq. (1), we will get zero on
the left hand-side.

Example 1 Find the values of 7 such that y(z) = e"® is a solution of the given differential equation.
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In general, we subsititute y = €"* in Eq. (1). Then
ar?e™ + bre™ + ce™ =0

Since €” is never zero. We conclude y = e”® will satisfy the differential equation in Eq. (4) precisely when ris a

root of the algebraic equation
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ar’> +br+c¢=0
This quadratic equation is called the characteristic equation of the homogeneous linear differential equation
ay’ +by +cy=0

If Eq. (2) has distinct (unequal) roots r1 and 73, then the corresponding solutions y; () = e™* and
ya(x) = e™* of Eq.(2). are linearly independent. Why?

Theorem 5 Distinct Real Roots
If the roots 71 and 5 of the characteristic equation in Eq. (2) are real and distinct, then
y(z) = c1e™” + cze™”

is a general solution of Eq. (1).

Question: What if we have r; = ry for the characeristic equation?
Example 2
Find general solutions of the given differential equations.
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In general, we have the following theorem if r; = 7.
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Theorem 6 Repeated Roots

If the characteristic equation in Eq. (2) has equal (necessarily real) roots 1 = 79, then,
y(z) = (c1 + cazx)e™™

is a general solution of Eq. (2).

Exercise 3

Find general solutions of the given differential equations.
(M9%y" -6y +y=0
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Solution.

(1) The corresponding characteristic equation is
92 —6r+1=0
= r2- %r + % =0
= (r — %)2 =0
= T1=T2= %
The general solution isy = (¢; + cy:)e%””, where ¢; and c¢g are constants,

(2) The corresponding characteristic equation is
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, 3 g .
Soy = c1y1 + caya = c1e*7 + coe 2% = ¢1 + cae” 2% is a general solution.



Exercise 4.
Solve the initial-value problem 2y” + 5y’ — 3y = 0,y(0) = —5,4'(0) = 22,
Solution.
The characteristic equation is given by:
2r’ +5r—3=0

Solving this, we get
r1=—andry = —3
1= 3 2

The general solution to the homogeneous differential equation is given by:

y(t) = cre?’ + cpe .

Now, we can use the initial conditions y(0) = —5 and 3/(0) = 22 to find the values of ¢; and ¢s.
As y(0) = 5, we have

y(0) = c1e’ + coe® = ¢ + ¢o = —5.
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As y'(0) = 22, we have

1
y'(O) = 561 - 362 =22
Solving
c1+cy=-5
! 3 22
—c1 — 3¢y = 22.
2 1 2

We getc; = 2and co = —T.

Therefore

y(x) = 2e? — Te 32,



