Lecture 10. Linear Second-Order Equations with Constant Coefficients Part 1

Linear Second-Order Equations with Constant Coefficients

Let's discuss how to solve the homogeneous second-order linear differential equation

$$ay'' + by' + cy = 0 \tag{1}$$

with constant coefficients a, b, and c.

By

ìS

Consider a function of the form $y = e^{rx}$. Observe that

$$y' = (e^{rx})' = re^{rx}, \qquad ext{and} \quad y'' = (e^{rx})'' = r^2 e^{rx}.$$

This suggest that we can try to find r such that when we substitute y, y' and y'' into Eq. (1), we will get zero on the left hand-side.

Example 1 Find the values of r such that $y(x) = e^{rx}$ is a solution of the given differential equation.

$$y'' + 2y' - 15y = 0$$

ANS: If $y(x) = e^{rx}$, then $y' = re^{rx}$, $y'' = r^{2}e^{rx}$
So we need find r such that
 $r^{2}e^{rx} + 2re^{rx} - 15 e^{rx} = 0$
 $\Rightarrow e^{rx} (r^{2} + 2r - 15) = 0$
Note $e^{rx} \neq 0$ for any x
So $r^{2} + 2r - 15 = 0$ (characteristic eqn)
 $\Rightarrow (r+5)(r-3) = 0 \Rightarrow r = -5$ or $r = 3$.
Thus $y_{1} = e^{-5x}$ and $y_{2} = e^{3x}$ are solutions to the given equ.
Note y_{1} and y_{2} are linearly independent.
Thus 4 , $y(x) = c_{1}y_{1} + c_{2}y_{2} = c_{1}e^{-5x} + c_{2}e^{3x}$
 a general solution, where c_{1} and c_{2} are constants.

In general, we subsititute $y=e^{rx}$ in Eq. (1). Then

$$ar^2e^{rx} + bre^{rx} + ce^{rx} = 0$$

Since e^{rx} is never zero. We conclude $y = e^{rx}$ will satisfy the differential equation in Eq. (4) precisely when r is a root of the algebraic equation

$$ar^{2} + br + c = 0 \qquad \Upsilon_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4\alpha c}}{2\alpha} \qquad (2)$$

This quadratic equation is called the **characteristic equation** of the homogeneous linear differential equation

$$ay'' + by' + cy = 0$$

If Eq. (2) has distinct (unequal) roots r_1 and r_2 , then the corresponding solutions $y_1(x) = e^{r_1 x}$ and $y_2(x) = e^{r_2 x}$ of Eq. (2). are linearly independent. Why?

Theorem 5 Distinct Real Roots

If the roots r_1 and r_2 of the characteristic equation in Eq. (2) are real and distinct, then

$$y(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x}$$

is a general solution of Eq. (1).

Question: What if we have $r_1 = r_2$ for the characeristic equation?

Example 2

Find general solutions of the given differential equations.

$$y^{\prime\prime}+4y^{\prime}+4y=0$$
 \red{B}

ANS: The corresponding char. eqn is

$$r^{2} + 4r + 4 = 0$$

 $\Rightarrow (r+2)^{2} = 0 \Rightarrow r_{1} = r_{2} = -2$
So $y_{1} = e^{r_{1}x} = e^{-2x}$ is a solution to a
How do we find another solution y_{2} such that y_{1} by
care linearly independent?
Let's try $y_{1} = x e^{-2x} (= xy_{1})$
 $y'_{1} = (x e^{-2x})' = x(e^{-2x})' + (x)' e^{-2x} = -2x e^{-2x} + e^{-2x}$
 $y''_{1} = -2e^{-2x} + (-2x)(-2)e^{-2x} - 2e^{-2x} = -4e^{-2x} + 4xe^{-2x}$

Then
$$LHS = Y_{1}'' + 4Y_{1}' + 4Y_{2} = -4e^{-2x} + 4xe^{-3x} + 4(-2xe^{-2x} + e^{-2x}) + 4xe^{-2x}$$

 $= -4e^{-3x} + 4xe^{-2x} - 8xe^{-2x} + 4e^{-2x} + 4xe^{-2x} = 0 = RHS$.
So $Y_{1} = xe^{-2x}$ is a solution. And $Y_{1} = e^{-2x}$ and $Y_{2} = xe^{2\pi}$
are linearly independent (check it using Wroaskian)
By Thm 4, $Y(x) = C_{1}Y_{1} + C_{2}Y_{2} \Rightarrow Y(x) = (C_{1} + C_{2} + x)e^{-2x}$ is a general
solution.

In general, we have the following theorem if $r_1=r_2.$

Theorem 6 Repeated Roots

If the characteristic equation in Eq. (2) has equal (necessarily real) roots $r_1 = r_2$, then,

$$y(x) = (c_1 + c_2 x)e^{r_1 x}$$

is a general solution of Eq. (2).

Exercise 3

Find general solutions of the given differential equations.

(1)
$$9y'' - 6y' + y = 0$$

(2) $2y'' + 3y' = 0$

Solution.

(1) The corresponding characteristic equation is

$$9r^2 - 6r + 1 = 0 \ \Rightarrow r^2 - rac{2}{3}r + rac{1}{9} = 0 \ \Rightarrow (r - rac{1}{3})^2 = 0 \ \Rightarrow r_1 = r_2 = rac{1}{3}$$

The general solution is $y=(c_1+c_2x)e^{rac{1}{3}x}$, where c_1 and c_2 are constants,

(2) The corresponding characteristic equation is

$$2r^2 + 3r = 0$$

 $\Rightarrow r(2r+3) = 0$
 $\Rightarrow r = 0 \text{ or } r = -\frac{3}{2} \text{ (distinct)}$

So $y = c_1 y_1 + c_2 y_2 = c_1 e^{0 \cdot x} + c_2 e^{-\frac{3}{2}x} = c_1 + c_2 e^{-\frac{3}{2}x}$ is a general solution.

Exercise 4.

Solve the initial-value problem 2y'' + 5y' - 3y = 0, y(0) = -5, y'(0) = 22.

Solution.

The characteristic equation is given by:

$$2r^2+5r-3=0$$

Solving this, we get

$$r_1 = rac{1}{2} ext{ and } r_2 = -3$$

The general solution to the homogeneous differential equation is given by:

$$y(t) = c_1 e^{\frac{1}{2}t} + c_2 e^{-3t}.$$

Now, we can use the initial conditions y(0) = -5 and y'(0) = 22 to find the values of c_1 and c_2 .

As y(0) = 5, we have

$$y(0)=c_1e^0+c_2e^0=c_1+c_2=-5.$$

We compute $y'(t)=rac{1}{2}c_1e^{r_1t}-3c_2e^{-3t}$

As $y^\prime(0)=22$, we have

$$y'(0) = rac{1}{2}c_1 - 3c_2 = 22$$

Solving

$$c_1+c_2=-5 \ rac{1}{2}c_1-3c_2=22$$

We get $c_1 = 2$ and $c_2 = -7$.

Therefore

$$y(x) = 2e^{\frac{x}{2}} - 7e^{-3x}.$$